If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40000=3x^2+1308x+25268
We move all terms to the left:
40000-(3x^2+1308x+25268)=0
We get rid of parentheses
-3x^2-1308x-25268+40000=0
We add all the numbers together, and all the variables
-3x^2-1308x+14732=0
a = -3; b = -1308; c = +14732;
Δ = b2-4ac
Δ = -13082-4·(-3)·14732
Δ = 1887648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1887648}=\sqrt{44944*42}=\sqrt{44944}*\sqrt{42}=212\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1308)-212\sqrt{42}}{2*-3}=\frac{1308-212\sqrt{42}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1308)+212\sqrt{42}}{2*-3}=\frac{1308+212\sqrt{42}}{-6} $
| 15p-12p-p+1=19 | | 3k-3k+4k+2k-5k=20 | | 6x-12=144*2 | | (3x+22)°=(10x-6)° | | 1350=(x+30)•15 | | 6x-12=144x2 | | y-6+5/8=12+7/8 | | 6x-12=144•2 | | 1+8(8n-1)=-455 | | 6z-12=144•2 | | -4r=-120 | | y-3/7=3 | | h/5+4=23 | | 8n^2=-62 | | x-4/5=52/3 | | 173.58=6(0.07m+20.70+0.10(20.70) | | y+7.8=9.23 | | 25r=-200 | | 6x(-5)+10(1)+2=20 | | 3x+5+7x=9x-4+6x | | x/1.2=4.5 | | 12+14x-10+2x=5 | | -3x+25+5x+21=2 | | (x-20)*7=49 | | -10+8y=2 | | 6s-3s+2s=15 | | 11d+3d-4d=10 | | 2(1-8p)=-110 | | 10y−2=4y+22 | | X=35-7z+8 | | 3x-7=-63 | | 127=5x-8 |